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Abstract. The practical advantage expected from transferable e-cash
compare to non-transferable is the significant reduction of the interaction
number between the bank and the users. However, this property is not
fulfilled by anonymous transferable e-cash schemes of the state-of-the
art. In this paper, we first present a transferable e-cash scheme with
a reduced number of communications between the bank and the users
that fulfils the computational anonymity property. Next, we present a
transferable e-cash scheme with a reduced interaction number that fulfils
the unconditional anonymity. This latter scheme is quite less efficient.
Keywords. Electronic cash, anonymity, transferability.

1 Introduction

In regular cash systems, users withdraw coins from a bank, and then pay
merchants using coins. Next, merchants can use the received coins to pay
another merchant or deposit coins to the bank. Moreover, regular cash
systems protect the anonymity of users.

Emulating regular cash in the electronic setting implies providing the
user anonymity against both the bank and the merchant during a pur-
chase, i.e., it must be impossible to link two spends and a spend to a
withdrawal. Ideally, the anonymity of honest users must be protected and
the identity of cheaters must be recovered without using a trusted third
party. As it is easy to duplicate electronic data, an e-cash system must
prevent a user from double-spending. An electronic coin system must also
prevent a merchant from depositing the same coin twice.

The transferability property is another fundamental property of reg-
ular cash. However, it has received only little attention in the electronic
setting. This may be explained by the impossibility to transfer a coin
without increasing its size [6]. It is clearly a limitation but this apparent
drawback is not unacceptable for some practical applications depending
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on the amount of available storage data and the growth of the coin size.
The main expected advantage of the transferability property compare to
non-transferability for e-cash is the decrease of the interaction number
between the bank and the users. Thus, as on-line electronic payment sys-
tems require communications with a central authority during the payment
transaction, then transferability is only an issue for off-line systems.

1.1 Related Works

As far as we know, the transferability property in e-cash schemes has
received only little attention.

In 1989, Okamoto and Ohta [11] proposed a transferable e-cash scheme
that does not provide the anonymity property since it is possible to link
several spends of the same user. Next, van Antwerpen [15] proposed a
method for transferring e-cash which was later sketched in [6]. This trans-
ferable e-cash scheme fulfils the user anonymity. However, at any time a
user wants to act as a payee during a spending protocol, he has to before-
hand interact with the bank in a protocol corresponding to the withdrawal
of a coin with no monetary value. This drawback implies a significative
increase of the number of transactions between the bank and users which
make the scheme less attractive in the transferability setting where the
aim is precisely to decrease these communications.

1.2 Our Contribution and Organization of the Paper

We present two anonymous transferable e-cash schemes that improve the
state-of-the-art on anonymous transferable e-cash by addressing the prob-
lem of decreasing the interaction number between the bank and users.
Indeed, it is no more necessary for a payee to beforehand interact with
the bank for receiving a coin. Both schemes allow to withdraw efficiently
a set of coins (a wallet) instead of a coin.

Section 2 introduces the security model and some useful tools. In
Section 3, we present a first transferable scheme that fulfils a computa-
tional anonymity and in Section 4 we present a second transferable e-cash
scheme that fulfils an unconditional anonymity at the cost of a less effi-
cient result. We conclude in Section 5.

2 Definitions and Useful Tools

In this section, we first define transferable e-cash algorithms, global
variables and oracles. Next, we describe the security properties.
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2.1 Algorithms

A transferable e-cash system involves two types of player: a bank B and
a user U . A wallet W and a coin C are both represented by an identifier
S and some values π needed to prove their validity.

– ParamGen(k) is a probabilistic algorithm that outputs the parame-
ters of the system Par (including the security parameter k).

– BKeyGen(Par) (resp. UKeyGen(Par)) is a probabilistic algorithm exe-
cuted by B (resp. U) that outputs its key pair (skB, pkB) (resp. (skU , pkU )).

– Withdraw(B(skB, pkB, pkU , Par), U(skU , pkU , pkB, Par)) is an inter-
active protocol where U withdraws a wallet from B. At the end, U either
gets a wallet W = (S, π) and outputs OK, or outputs ⊥. The output of
B is either its view VWB of the protocol (including pkU ), or ⊥.

– Spend (U1(S, π, pkU2 , Par),U2(skU2 , pkB, Par)) is an interactive pro-
tocol where U1 gives a coin to U2. U2 outputs either C = (S, π) or ⊥, and
U1 either saves that C is spent and outputs OK, or outputs ⊥.

– Deposit (U(C, skU , pkU , pkB, Par),B(skB, pkB, pkU ,L, Par)) is an
interactive protocol where U deposits a coin C = (S, π) at the bank B.
If (S, π) is not consistent/fresh, then B outputs ⊥1. Else, if S belongs to
L, then there is an entry (S, π̃) and B outputs (⊥2, S, π, π̃). Else, B adds
(S, π) to L, credits U ’s account, and returns L. U ’s output is OK or ⊥.

– Identify (S, π, π̃, Par) is a deterministic algorithm executed by B
that outputs a public key pkU and a proof ΠG. If the users who had
submitted π and π̃ are not malicious, then ΠG is evidence that pkU is the
registered public key of a user that double-spent a coin.

– VerifyGuilt(pkU , ΠG, Par) is a deterministic algorithm that can
be executed by any actor. It outputs 1 if ΠG is correct and 0 otherwise.

2.2 Global Variables and Oracles

The set of user’s public (resp. secret) keys is denoted by PK = {(i, pki) :
i ∈ N} (resp. SK = {(i, ski) : i ∈ N}; ski =⊥ if user i is corrupted).

The oracle Create(i) creates a new honest user. Corrupt(i, pki) cre-
ates a new corrupted user with public key pki and Corrupt(i) corrupts
user i by giving the secret key of user i to the caller.

The oracle Suppl() (resp. Withd(i)) plays the bank (resp. user i) side
of a Withdraw protocol. The oracle Withd&Suppl(i) plays both sides of a
Witdraw protocol and outputs the communications between B and U .

The oracle Rcv(i) (resp. Spd(i)) plays the role of U2 (resp. U1) with
secret keys of user i in the Spend protocol. The oracle Spd&Rcv(i1, i2, j)
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plays the role of both U1 with secret keys of user i1 and U2 with se-
cret keys of user i2 during the spend protocol of the coin j and out-
puts the communications. We define four prototypes: Spd&Rcv(⊥,⊥, j),
Spd&Rcv(i1,⊥,⊥), Spd&Rcv(i1, i2,⊥) and Spd&Rcv(⊥, i2, j), where ⊥ de-
notes a random choice for a user or a coin.

The oracle CreditAccount() plays the role of B during a Deposit
protocol. If the executed Deposit protocol outputs (⊥2, S, π, π̃), then it
runs the algorithm Identify on inputs (S, π, π̃) and outputs the result.
The oracle Depo(i) plays the role of the user i during a Deposit protocol.

2.3 Security Properties

Unforgeability. Users cannot spend more coins than they honestly got.
Game. Let an adversary A be a p.p.t. Turing Machine with access to PK.

1. A is given the public key pkB and Par.
2. A can play as many times as he wants with the oracles: Create,

Corrupt, Suppl, Withd&Suppl, Spd, Spd&Rcv, Rcv and CreditAccount.

Let qW (resp. qS , resp. qC) denote the number of successful queries to
Suppl (resp. Spd, resp. Corrupt). Let wi denote the number of withdrawn
coins of the i-th query and ci denote the number of coins get back from
the i-th corrupted user. Then, A wins if, at any time of the game, he
makes

∑qW
i=1wi + qS +

∑qC
i=1 ci + 1 successful queries to the Rcv oracle.

Anonymity. The bank, even cooperating with users, cannot link spend
and/or withdrawal transactions according to the underlying user identity.
Game. Let an adversary A be a p.p.t. Turing Machine with access to PK.

1. A is given (skB, pkB) and Par, and A can play with the oracles:
Create, Corrupt, Withd, Spd, Spd&Rcv, Rcv and Depo.

2. At any time, A chooses two honest user public keys pki0 , pki1 ∈ PK
such that users i0 and i1 own coins of the same size1 and they have
been manipulated only by the oracles: Create, Withd, Spd, Spd&Rcv(i1,⊥
,⊥), Spd&Rcv(⊥,⊥, j) and Depo.

3. A bit b is secretly and randomly chosen. Then A plays with Spd(ib,⊥).
4. A outputs a bit b′.

We require that, for every A playing this game, the probability that b = b′

differs from 1/2 by a fraction that is at most negligible.

1 A is not allowed to use the coin size that necessary grows when transferred [6].
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Identification of double-spenders. No collection of users can double-
spend a coin twice without revealing one of their identities.
Game. Let an adversary A be a p.p.t. Turing Machine with access to PK.

1. A is given the public key pkB and Par.
2. A can play as many times as he wants with the oracles: Create,

Corrupt, Suppl, Withd&Suppl, Spd, Spd&Rcv, Rcv and CreditAccount.

A wins if, at any time of the game, the oracle CreditAccount outputs
(⊥2, S, π, π̃) and the output of the oracle Identify on inputs (S, π, π̃) is
not a registered user public key.

Exculpability. The bank, even cooperating with malicious users, cannot
falsely accuse (with a proof) honest users from having double-spent a coin.
Game. Let an adversary A be a p.p.t. Turing Machine with access to PK.

1. A is given the key pair (pkB, skB) and Par.
2. A can play as many times as he wants with the oracles: Create,

Corrupt, Withd, Spd, Spd&Rcv, Rcv and Depo.
3. At any time of the game, A outputs two spends (S, π) and (S, π̃).

A wins if the outputs of the algorithm Identify on inputs (S, π, π̃) is the
public key pk of an honest user together with a valid proof ΠG, and the
output of the algorithm VerifyGuilt on inputs (pk,ΠG) is 1.

2.4 Useful Tools

Signature of knowledge. We consider zero-knowledge proofs of knowl-
edge (ZKPK) constructed over a group G either of prime or unknown
order. We use proofs of knowledge of a discrete logarithm [14, 10] or of a
representation, a proof of equality of two known representations [6], and
a proof that a committed value is less than another committed value [5].

These proofs are three-move protocols between a prover and a verifier:
a commitment t, a question c and an answer s. The soundness of these
constructions ensures that given a single t, if someone is able to provide
s and s′ related to c and c′ s.t. c 6= c′, then it is possible to compute the
secret.

These interactive proofs can also be used non interactively (a.k.a.
signatures of knowledge) by using the Fiat-Shamir heuristic [9]. Their
security has been proven in [13], using the forking lemma.
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Camenisch-Lysyanskaya Signature Scheme. These signature schemes
are proposed in [3] with in addition some specific protocols:

– an efficient protocol between a user U and a signer S that permits
U to obtain from S a signature σ of some commitment C on values
(x1, . . . , xl) unknown from S. S computes CLSign(C) and U gets σ =
Sign(x1, . . . , xl) that can be verified by Verif(σ, (x1, . . . , xl)) = 1.

– an efficient proof of knowledge of a signature on committed values,
denoted by PK(α1, . . . , αl, β : β = Sign(α1, . . . , αl)).

3 Transferable Compact E-cash Scheme

In this section, we present a transferable e-cash scheme with a reduced
number of communications between the bank and the users that fulfills
the security properties given in Section 2.3. Moreover, the proposed con-
struction allows to withdraw efficiently a wallet instead of a coin.

3.1 Overview of our construction

Our construction is based on the compact e-cash scheme [2]. More pre-
cisely, in the withdrawal, the user obtains from the bank a CL signa-
ture (see Section 2.4) on some data related to the withdrawn wallet. The
spending of a withdrawn coin consists in the computation by the payer of
a serial number S and a validity tag T used in case of double-spending.

The main modification comes from the possibility for the receiver to
spend later a received coin. This is done by modifying the challenge sent
by the receiver during a Spend: it should include a receiver identifier (here
uj), it should be verifiable (here using the Dodis-Yampolskiy pseudo-
random function [8]) and it should be signed by the payer (here with the
signature of knowledge of the payment validity) that permits the receiver
to get a payer validation that he is allowed to spend later the coin.

Moreover, the security tag includes the serial number of the coin (so as
to prevent double-spending) and the history of the coin (so as to prevent
a fraud on the anonymity of the spenders done by the bank).

3.2 Description of the Scheme

Setup. Let k be a security parameter. Let G be a group of prime order p
and g, g0, g1, g2, g3, g4, g5 are random generators in G. These data consti-
tute the public parameters Par. Let H be a cryptographic hash function.
In the following, a||b denotes the concatenation of a and b.
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In the BKeyGen algorithm, B computes two key pairs (skB,1, pkB,1) and
(skB,2, pkB,2) of a CL signature scheme (see Section 2.4) that permit it
to sign wallets and enroll users, respectively. Then, during the UKeyGen
algorithm, each user Ui obtains a certificate Ci associated to his public key
pkUi = gui0 (related to skUi = ui ∈R G). The certificate is a CL (verifiable)
signature done by B: Ci = Sign(ui, wi) where wi is a random value.

Withdrawal Protocol. A wallet is a signature under the bank’s public
key pkB on the set of values (s, ui, t, J, x) where ui is the user secret key,
s, t and x are random values and J is the number of coins contained in
the wallet. The value s implicitly defines J unlinkable serial numbers and
the value t implicitly defines J unlinkable blinding values.

A user Ui using (ui, gui0 ) interacts with B using (skB1 , pkB1) as de-
scribed in Figure 1 in a protocol close to the ones in [2, 5]. At the end, Ui

B
s′, x, J, t ∈R Zp

s = s′ + r′

W = (s, (ui, t, J, x, σ))
Verif(σ, (s, ui, t, J, x))

?
= 1

C′ = gs
′

0 g
ui
1 gt2g

x
4

r′ ∈R Zp
C = C′gr

′
0 g

J
3

σ = CLSign(C)
r′, σ

U = PK(α, β, γ, δ : C′ = gα0 g
β
1 g
γ
2 g
δ
4 ∧ pkUi

= gβ)

J,C′, pkUi

Ui

Fig. 1. Withdrawal protocol

gets a wallet W = (S, π) = (s, (ui, t, J, x, σ)) where σ is a CL signature
on (s, ui, t, J, x).

Spending a withdrawn coin. A user Ui, owning W = (s, (ui, t, J, x, σ))
withdrawn from B, wants to spend a coin to a user Uj . The protocol is
similar to the one of the compact e-cash system, except that Uj computes
the random value r using her secret key uj and some data d′.

1. Uj computes r = g

1
uj+d

′

0 where d′ represents some data related to the
transaction. Next, Uj sends r and d′ to Ui.
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2. Ui computes R = H(r‖d‖d′) (where d represent some data related
to the transaction) and chooses an unspent coin j ∈ [1, J ]. Next, Ui
computes S = g

1
s+j+1

5 , T = pkUig
R

t+j+1

5 and a proof of validity:

V = PK(α, β, δ, ζ, η, ι, θ : α = Sign(ι, β, δ, ζ, θ) ∧ η ∈ [1, ζ]∧

∧S = g
1

β+η+1

5 ∧ T = gδ0g
R

ι+η+1

5 )(S, T, r)

where the signature is the signature σ of the withdrawn wallet.
3. The spent coin is represented by (S, π = (T, V, r, d, d′)). Implicitly, a

related variable hist is initialized to hist := S‖T .

Spending a received coin. Assume that a user Ui owns a coin C =
(S, π = (π1, . . . , πl)), where πk corresponds to Tk, Vk, rk, dk, d′k, 1 ≤ k ≤
l, that he legitimately received by another user. Since Ui legitimately
received C, it is necessary that rl = g

1/(ui+d
′
l)

0 and thus rl involves ui.
The spending of the coin C by user Ui to user Uj consists first in

computing a security tag T implying the identifier ui that is certified by
the bank in order to be able to recover his identity in case of double-
spending. Next, Ui proves that the same identifier ui is embedded into
T and in the challenge rl of the previous spending (using the validity
proof of the Dodis-Yampolskiy PRF and the signature of knowledge of
the previous spending).

1. Uj computes r = g

1
uj+d

′

0 where d′ represents some data related to the
transaction. Next Uj sends r and d′ to Ui.

2. Ui computes R = H(r‖d‖d′), h = H(hist), T = pkUig
R

ui+S+h

5 and a
proof of validity:

V = PK(α, β, γ : T = gαg
R

α+S+h

5 ∧rl = g

1
α+d′

l
0 ∧β = Sign(α, γ))(S, T, r)

where the signature corresponds to the certificate of user Ui.
3. The spent coin is (S, π = (π1, . . . , πl, πl+1)) where πl+1 corresponds to
T, V, r, d, d′. The value hist is updated by hist := hist‖T .

Deposit protocol. A coin may have been spent several times before be-
ing deposited at the bank. Then, a coin is represented by (S, (π1, . . . , πl))
where πk, 1 ≤ k ≤ l, corresponds to Tk, Vk, rk, dk, d′k.

The bank B first verifies the consistency of the coin (i.e. computes
the values R using the hash function H and the values r and d to check
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the validity proofs). Next B verifies whether or not the coin has already
been deposited by checking if the identifier S is already in the database
of spent coins. If not, B credits the user account. Otherwise, B checks the
freshness of the coin. If Rl = R̃l the depositer is a cheater. Else, the coin
is fresh, there is a double-spending and B uses the identify protocol.

Identify protocol. In case of a double-spending detection, B has to re-
trieve the cheater identity from two deposited coins (S, π = (π1, . . . , πl))
and (S, π̃ = (π̃1, . . . , π̃l̃)) with the same serial number S. Then, B looks
for the minimal value kmin of k such that πk 6= π̃k (this case always hap-
pens) and recovers the cheater’s identity using the two double spending
equations Tkmin and T̃kmin included in πkmin and π̃kmin . Then, B com-
putes Rkmin = H(rkmin‖dkmin‖d′kmin) and R̃kmin = H(r̃kmin‖d̃kmin‖d̃′kmin).
Finally, B gets the public key of the cheater by computing:

pkU = (T
R̃kmin
kmin

/T̃
Rkmin
kmin

)
1

R̃kmin
−Rkmin

3.3 Security Proof

Theorem 1. In the random oracle model, the transferable compact e-
cash scheme fulfils:

– The unforgeability property under the unforgeability of the CL signa-
ture scheme.

– The anonymity property under the security of the Dodis-Yampolskiy
PRF.

– The identification property under the unforgeability of the signatures
of knowledge and the soundness of the underlying proofs of knowledge.

– The exculpability property under the DL assumption.

Unforgeability. We want to show that if an adversary A is able to break
the unforgeability of our construction, then it is possible to break the
unforgeability of the CL signature scheme under adaptive chosen message
attacks. More precisely, we have access to two signature oracles, both
related to the CL signature scheme but with two different key pairs (one
for the enrollment and one for the withdrawal). Our aim is to break the
unforgeability of one among the two CL signature schemes involved in
the construction. Let us consequently consider two different games with
two adversaries.

In game 1, we play the role of an honest bank with access to a CL
signature oracle for each enrollment, when A is active or not. In game 2,
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we play the role of an honest bank with access to a CL signature oracle
for each withdrawal.

In both games, after each successful spending executed by A, we ex-
tract, using standard techniques, all the values embedded into the valid
proof of knowledge V of the last spending. For the CL signature, these val-
ues corresponds either to (s, u, t, J, x, σ) when a withdrawn coin is spent
or to (u,w,C) when a received coin is spent. By assumption, at any time
of both games, there are more spent coins than A can legitimately own,
and there is no detection of double-spending.

In game 1, ifA uses the spending of a received coin, then it is necessary
that one signature C on a message m = (u,w) does not come from the
signature oracle. Thus, this one more signature is a forgery in the first
CL’s scheme on m = (u,w). Otherwise, abort the game and output ⊥.

In game 2, if A uses the spending of a withdrawn coin, it is necessary
that one signature σ on a message m = (s, u, t, J, x) is unknown and
does not come from the signature oracle. Thus, this one more signature
is a signature (forgery) in the second CL’s scheme on the message m =
(s, u, t, J, x). Otherwise, abort the game and output ⊥.

Consequently, by playing randomly one of the two above games until
the result is not ⊥, we can break the unforgeability of the CL signature
scheme in expected running-time polynomial which is impossible.

Since our proof requires rewinding to extract the values, it is valid
only against sequential attacks and not in a concurrent setting where A
is allowed to interact with B in an arbitrarily interleaving manner. Indeed,
our machine may be forced to rewind an exponential number of times.
This drawback can be overcome by using well-know techniques [7] that
require from the user the encryption of all values in a verifiable manner [4].

Anonymity. An adversary A can succeed in breaking the anonymity
property using several ways:

1. A can succeed by linking a withdrawal and a (first) spending or two
spends related to two withdrawn coins. This is impossible since if such
an adversary exists, it would also break the anonymity property of the
compact e-cash scheme [2].

2. A can succeed by linking the spending of a withdrawn coin and the
spending of a received coin. That means that A succeeded in link-
ing T = pkUg

R/(t+j+1)
5 and (r̃ = g

1/(u+d̃)
0 , T̃ = pkUg

R̃/(u+S̃+h̃)
5 ). This

comes to decide whether the two values g1/(u+d) and gug1/(t+j+1)
5 em-

bed the same u or not. This is impossible since even if A has access
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to the values gu and g
1

u+d , he cannot decide whether this is the same
u due to the security of the Dodis-Yampolskiy PRF [8].

3. A can succeed by linking two spends of two received coins. That means
that A succeeded in linking (r = g

1/(u+d)
0 , T = pkUg

R/(u+S+h)
5 ) and

(r̃ = g
1/(u+d̃)
0 , T̃ = pkUg

R̃/(u+S̃+h̃)
5 ). This comes to decide whether the

two values g
1

u+d and g
1

u+d̃ embed the same u or not. This is impossible
since the Dodis-Yampoliskiy PRF is secure.

Note that a user can legitimately received twice the same coin without
compromising his anonymity due to the h involved in the value T .

Remark 1. Assume that A is an unbounded adversary. Then A can break
the unconditional anonymity. Indeed, given T = pkUg

R/(u+S+h)
5 , A knows

or can compute S, h = H(hist) and R = H(r2, d2, d
′
2) and A is assumed

to be able to compute skv = v for every public key pkv = gv0 . Finally, A
simply checks whether T2

?= gv0g
R2/(v+S+h2)
5 .

Identification of Double-spenders. Suppose that an adversary A
succeeds in breaking the identification of double-spender property. That
means that there are two valid spends with the same serial number S =
g
1/s+j+1
5 and two different proofs π = (π1, · · · , πl) and π̃ = (π̃1, · · · , π̃l̃).

The double-spending has been detected at rank k, which means that for
all j < k, πj = π̃j and that πk 6= π̃k. Note that the receivers are honest,
and thus the values Rk and R̃k are different and correctly computed.

1. Case k = 1: since the two spends are correct, R1 and R̃1 uniquely fixe
T1 = pkUg

R1/(t+j+1)
5 and T̃1 = pkUg

R̃1/(t+j+1)
5 as the only security tags

to accompany serial number S except if A has succeeded in faking the
proof of knowledge V1 (or Ṽ1). Moreover, the embedded public key
necessary belongs to a registered user, except if A has forged the CL
signature scheme. Both cases only happens with negligible probability.

2. Case k > 1: since the two spends are correct, Rk and R̃k uniquely fixe
Tk = pkUg

Rk/(u+S+1)
5 and T̃k = pkUg

R̃k/(u+S+1)
5 as the only possible

security tags except ifA has faked Vk (or Ṽk). Moreover, the public key
belongs to a registered user, except if A has forged the CL signature
scheme. Both cases only happens with negligible probability.

Exculpability. Suppose that an adversary A succeeded in breaking
the exculpability property. That means that there are two valid spends
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with the same serial number S = g
1/s+j+1
5 and two different proofs π =

(π1, · · · , πl) and π̃ = (π̃1, · · · , π̃l̃). The double-spending can be detected at
rank k, which means that for all j < k, πj = π̃j and πk 6= π̃k. The receivers
are honest and thus the values Rk and R̃k are correct and different. As
spends are correct, Vk (resp. Ṽk) includes a proof that Tk (resp. T̃k) is
well-formed. Thus, since the user is honest, A has faked Tk or T̃k.

We now use A to break the one-more discrete logarithm problem [1].
Given l + 1 values, we have to find the discrete logarithm of all these
values, and we can ask a discrete logarithm oracle at most l times. We
first associate each value to the public key of one user (assuming there are
at most l users) and we ask the oracle each time A corrupt a user. It is
moreover possible to simulate all withdrawals and spends using standard
techniques (in the random oracle model). At the end, A outputs two
correctly formed Tk and T̃k and the associated proofs of validity. Thus,
Tk and T̃k are both formed from the same public key of a honest user.

From the two proofs of validity, we can extract the user secret key
and thus break the one-more discrete logarithm. Indeed, since the user is
honest, this discrete logarithm has not been requested to the oracle.

4 Unconditionally Anonymous Transferable Scheme

In this section, we present a transferable e-cash system providing the same
features than the scheme presented in Section 3. In addition, the proposed
scheme fulfils an unconditional anonymity. However, it necessitates a pre-
computing phase before spending a withdrawn coin.

4.1 Overview of our construction

We adapt the scheme presented at Section 3 in order to get an uncondi-
tional anonymity of users. The withdrawal phase in unchanged and the
spending phase also involves a challenge sent by the receiver including a
receiver identifier uj , that is verifiable and that is signed by the payer.

The main modification is the computation of the challenge sent by
the receiver during the spending phase that will be used during the next
spending. This challenge should provide an unconditional anonymity in-
stead of a computational one. Then, the receiver computes the commit-
ment t corresponding to the ZKPK of a representation (r, w) and that
will be signed by the spender; t will necessary be used during the next
spending. In case of double-spending, t will correspond to two different
questions. Two different answers will thus permits to retrieve in partic-
ular r. This value r is moreover used in T = guhr = pkUh

r and thus
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pkU can be retrieved. Finally, we introduce a pre-computation phase to
achieve the unconditional anonymity.

4.2 Description of the Scheme

The setup and the withdrawal protocol are unchanged from Section 3.2.

Pre-computation phase. Before spending a withdrawn coin, a user Ui
has to execute a pre-computation phase which is necessary to achieve the
unconditional anonymity. This phase is similar to the spending protocol
for a withdrawn coin defined in Section 3.2 with Ui = Uj . The main
difference is the computation of the random value involving the receiver
secret key; due to lack of space, this computation is only detailed in the
spending protocol below.

Next, Ui takes at random a bit B. If B = 0, then the pre-computation
phase is over. Else, Ui executes with himself the spending protocol.

Spending protocol. A user Ui, owning a coin (S, π = (T̂ , π0, π1, . . . , πl))
where πk = (Vk, Tk, T ′k, tk, dk), 1 ≤ k ≤ l and l is the number of time this
coin has been spent, can spend this coin to a user Uj .

1. Uj chooses at random r, w, a, b, computes T = g
uj
0 hr, T ′ = grhw and

t = gahb, and sends T ,T ′ and t to Ui.
2. Since Ui legitimately received this coin, it is necessary that Tl = guihrl ,
T ′l = grlhwl tl = galhbl and Ui knows the values of rl, wl, al and bl.
Ui first computes R = H(T‖T ′‖t‖d) where d represents some data
related to the spending and next computes a proof of validity of the
spent coin, that is, the signature of knowledge:

V = PK(α, β, γ, δ, ζ :
Tl = gα0 g

β
5 ∧ T ′l = gβ0 g

ζ
5 ∧ γ = Sign(α, δ))(S, Tl, T ′l , tl)

This proof is done by using as a commitment for T ′l the value tl and
as a challenge the value R. Consequently, to prove the knowledge of
rl and wl such that T ′l = grl0 g

wl
5 , Ui uses (tl, R, (sr = al − Rui, sw =

bl −Rwl)) as a signature of knowledge (see Section 2.4).
3. The spent coin is represented by (S, π = (T̂ , π0, . . . , πl+1) where πl+1 =

(V, T, T ′, t, d).
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Deposit and Identify Protocol. The deposit phase of a coin (S, π =
(T̂ , π0, . . . , πl)), where πi = (Vi, Ti, T ′i , di, ti), 0 ≤ i ≤ l, is similar to
the one presented in Section 3.2 except that the value R is computed as
R = H(Tl‖T ′l ‖tl‖dl).

In case of a double-spending detection, the bank B has two deposited
coins C = (S, π = (T̂ , π0, π1, . . . )) and C̃ = (S, π̃ = ( ˜̂

T, π̃0, π̃1, . . . )). If

T̂ 6= ˜̂
T , then B retrieves pkU by computing pkU = (T̂ R̃/ ˜̂

TR)1/(R̃−R). Else,
B looks for the minimum value k such that πk 6= π̃k; this case always
happens. Both πk and π̃k are correct and thus both Vk and Ṽk include a
proof that Tk = T̃k is well-formed. Moreover, both proofs necessary use
the same commitment t. Using standard technique and the soundness of
the proof of knowledge (see Section 2.4), B can easily retrieve guk−1

0 by first
retrieving rk−1 and thus, using Tk−1, the identity of the double-spender.

4.3 Achieving the Unconditional Anonymity

Due to lack of space, we only give security arguments for the unconditional
anonymity property of our scheme. It is unconditionally impossible to
learn anything about the user identity from a withdrawal due to the
unconditional security of the Pedersen commitment. More precisely, the
user identity is embedded twice during a spending protocol.

– In the Pedersen commitment T = guhr which is unconditionally hid-
ing [12]. Thus, no Shannon information about u is revealed in T .

– In the zero-knowledge signature of knowledge V . The zero-knowledge
property of the underlying proof of knowledge is also unconditional.
Thus, no Shannon information about u is revealed in V .

During the pre-computation phase, the security tag T̂ = pkUg
R0/(t+j+1)
5

(computed as in the first scheme) does not compromise the unconditional
anonymity. Indeed, even if A knows R0 = H(r0, d0, d

′
0), and that for every

pkv = gv0 , A can compute skv = v, A does not know neither t0 nor j0 and
thus A cannot determine which public key pkU is embedded into T̂ .

This pre-computation phase may introduce some flaws for other se-
curity properties, such as the double-spender identification. Indeed, A
can make the pre-computation twice, one with R = H(T0‖T ′0‖t0‖d0) and
the other with R̃ = H(T̃0‖T̃ ′0‖t̃‖d̃), such that R = R̃. However, since the
hash function is collision resistant, it is necessary that T0 = T̃0, T ′0 = T̃ ′0
and t0 = t̃0. The value T0 will be necessary used during the first Spend
protocol, i.e. either during the pre-computation phase or during an ef-
fective spending protocol. Thus, A necessary succeeded in faking a proof
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of knowledge or forged the CL signature scheme, which happens with
negligible probability.

5 Conclusion

In this paper, we present two transferable e-cash schemes that improve
the efficiency of anonymous transferable e-cash schemes by addressing
the problem of decreasing the number of interaction between the bank
and users. The first scheme fulfils the computational anonymity property
whereas the second one fulfils an unconditional anonymity at the cost of a
less efficient result. Moreover, both schemes allow to withdraw efficiently
a wallet instead of a coin at a time.
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